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Derivatives of camphorsultam which contain novel spirooxazolidine and spirooxazine structures have
been prepared in high yield and purity. Though it was expected that the ketone moiety would undergo
acetal formation, the imine instead underwent reaction and was proven by X-ray crystallography and
2D NMR techniques. The initial ketone-containing derivatives were then reduced to produce exo-hydroxy
analogs that have potential as a new family of chiral auxiliaries.
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1. Introduction

Camphor (1a, Scheme 1) has long been utilized as a source of
chirality in asymmetric synthesis. Well known for its synthetic
utility as a compound found in the chiral pool, camphor has been
functionalized in a number of positions on its bornane skeleton
to form a number of synthetically-diverse derivatives. A few exam-
ples of camphor derivatives that have found wide use in organic
synthesis are (1S)-(+)-10-camphorsulfonic acid (1b), which has
been widely used as a resolving agent;1,2 Oppolzer’s sultam (2), a
versatile chiral auxiliary found throughout the literature;3–10 and
Davis’ oxaziridines (311,12 and 413), which have found wide applica-
tion as chiral reagents.

2. Results and discussion

We have long been interested in N-sulfonyloxaziridines as chi-
ral, aprotic oxidizing agents. The synthetic utility that these com-
pounds have contributed to the field of asymmetric organic
synthesis is well documented in the literature, as these compounds
have found a number of uses in the synthesis of a wide variety of
natural and synthetic products.14–18 The structural diversity of this
family of compounds and the enantioselectivity displayed by the
derivatives, in particular dichloro derivative 3b and acetal 3c,
sparked our interest in expanding on these structures. It is well
known that the rigidity, steric demands, and electronic interactions
of the oxaziridines play a large role in the enantioselectivity they
exhibit.11,19 We envisioned expansion of Davis’ acetal oxaziridines,
ll rights reserved.

: +1 309 341 7829.
).
and attempted to produce a cyclic acetal version of oxaziridine 3c.
Although we anticipated difficulty in the incorporation of another
ring into an already rigid multicyclic ring system, the formation of
a cyclic acetal at the C-3 position (as in dioxolane 5a and dioxane
5b, Scheme 2) seemed a natural extension of dimethyl acetal 3c
published by Davis and co-workers.20 Our initial target was the for-
mation of acetal imines 6a and 6b.

Synthesis of the desired acetal derivatives was begun with
(1S)-(+)-10-camphorsulfonic acid (1b) following the literature
5a n = 1
b n = 2

6a n = 1 
b n = 2

Scheme 2.
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Scheme 5. Reagents and conditions: (a) BrCH2CH2OH (9a) or BrCH2CH2CH2OH (9b),
DBU, CH2Cl2, reflux; (b) LiAlH4, THF, 0 �C to reflux.

Figure 1. ORTEP of alcohol 10a.
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methods20–22 (Scheme 3). The oxidation of imine 7 using SeO2 led
to a-ketoimine 8 as a mixture with an over-oxidation product.
Allowing this mixture to sit overnight led to pronounced over-
oxidation of the desired ketone 8 and drastically lowered yields
of the desired product. Simple vacuum filtration through silica
gel afforded the removal of oxidant that remained after vacuum
filtration through Celite, as well as the oxidation byproduct, and
led to a 90% yield of a-ketoimine 8 in sufficient purity with an
extended shelf life.23

Table 1 shows a number of methods of acetal formation
attempted which ultimately led to successful formation of a
crystalline product. Standard acetal formation conditions (acid-
catalyzed, Dean–Stark trap, entry 1) and use of a ‘bulky proton’
source of ethylene glycol24–26 (entry 2) showed no signs of reac-
tion. It was found that use of 2-chloroethanol27 led to the forma-
tion of product (entry 3), but the yield was limited by
polymerization of 2-chloroethanol under basic conditions; lower
reaction temperatures in a non-polar solvent showed no signs of
the desired product (entries 4 and 5). The yield of the desired prod-
uct was improved using 2-bromoethanol28 (entry 6) with lessened
observation of polymerization; the reaction was optimized at a
lower temperature (entry 7) to produce compound 9a in an 86%
yield.29

Initial data, primarily 1H and 13C NMR, led us to believe that we
had formed desired acetal imine 6a (Scheme 4); upon X-ray crys-
tallography30 and 2D NMR techniques (DEPT, COSY, and HETCOR),
it was discovered that the imine functionality had actually under-
gone reaction instead of the ketone to produce spirooxazoline
Table 1
Methods of acetal formation for acetal 9a

Entry Conditions Yield (%)

1 Ethylene glycol, pTsOH, toluene, reflux 0
224–26 TMSOCH2CH2OTMS, TMSOTf, CH2Cl2, �78 to 0 �C 0
327 2-Chloroethanol, Li2CO3, 130 �C 54
4 2-Chloroethanol, Li2CO3, toluene, reflux 0
5 2-Chloroethanol, Li2CO3, xylenes, reflux 0
628 2-Bromoethanol, DBU, toluene, reflux 60
729 2-Bromoethanol, DBU, CH2Cl2, reflux 86
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derivative 9a. The novelty of these compounds and their potential
as a new category of camphor-based chiral auxiliaries redirected
our attention toward the synthetic utility of these spirooxazolines.

To expand the scope and utility of this novel camphor-derived
spirooxazoline and explore its potential as a chiral auxiliary, we
not only produced the dioxolane-type oxazolidine 9a,29 but also
its dioxane counterpart oxazine 9b through a similar procedure
(Scheme 5).31 Both ketones were then reduced with LiAlH4 in rea-
sonable yields to produce the exo alcohols 10a32 and 10b.33 The
structure and orientation of the reduction products were again
proven by X-ray crystallography, as seen in the ORTEP of alcohol
10a (Fig. 1). The ketone and/or alcohol functionalities may provide
a useful attachment point for the application of these compounds
as chiral auxiliaries.

3. Conclusions

We have produced a new family of chiral, non-racemic com-
pounds which contain a novel multicyclic ring system. Produced
by reaction of the imine functionality instead of the ketone, the
structures of keto spirooxazolidine 9a and spirooxazine 9b were
confirmed by X-ray diffraction, which subsequently underwent
reduction to produce the exo-hydroxy analogs 10a and 10b as con-
firmed by X-ray diffraction as well.30 We are continuing to study
these compounds for their potential as chiral auxiliaries, as well
as investigating methods of acetal formation in order to produce
sulfonylimines 6.
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